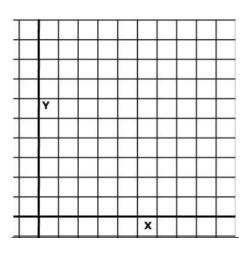
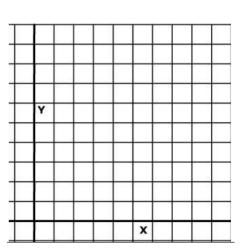

Graphing Practice Problem #4


How well can you read a graph???

1. Sketch a line with a negative slope


a) negative slope

c) zero slope

—	-	-			_	_	_	-
\vdash	+	-	-	_		-	-	-
\vdash	+	+		_		\vdash	-	┝
\vdash	+	+		-	2 3	\vdash		-
Y	+	+			-	\vdash		
\square					_			
\vdash	_							
\vdash	+	+		v				
	Y	Y	Y	Y	Y	Y	Y	Y

2. A student weighs an empty crucible. Its mass is 20.50 g. She adds some pieces of magnesium and then she weighs the crucible again. Its new mass is 25.50 g. She heats the crucible and its contents and weighs it every 5 minutes. She obtains the following data:

Time (min)	Mass of Crucible and magnesium (grams)
5	25.80
10	26.20
15	26.65
20	27.00
25	27.45
30	27.85
35	28.20
40	28.60

Plot the mass of the crucible's contents and calculate the slope (Don't forget to plot the mass of crucible and Magnesium at 0 minute!!!). What do you think is the significance of the slope?

Bonus Question:Why was the mass of a crucible and Magnesium increasing when you burned Magnesium?
The reaction was: $2 \text{ Mg}_{(s)} + O_{2(g)} \rightarrow 2 \text{ MgO}_{(s)}$

																	\square
																	\vdash
\vdash										_			_				
																	\square
																	\square
							-					\square					\square
\vdash																	\vdash
				 			 		 	_						_	-
\vdash																_	
																	\square
\vdash													_				\square
\vdash												\vdash					\vdash
																	\vdash
																	$\left - \right $
\vdash																	\square
																	\square
												\vdash					\square
																	\vdash
\vdash												$\left - \right $					\vdash